Integrated Search Menu

Dimitri Bertsekas

Biography

Dimitri P. Bertsekas was awarded the INFORMS 1997 Prize for Research Excellence in the Interface Between Operations Research and Computer Science for his book "Neuro-Dynamic Programming", the 2000 Greek National Award for Operations Research, the 2001 ACC John R. Ragazzini Education Award, the 2009 INFORMS Expository Writing Award, the 2014 ACC Richard E. Bellman Control Heritage Award for "contributions to the foundations of deterministic and stochastic optimization-based methods in systems and control," the 2014 Khachiyan Prize for Life-Time Accomplishments in Optimization, and the SIAM/MOS 2015 George B. Dantzig Prize. In 2018, he was awarded, jointly with his coauthor John Tsitsiklis, the INFORMS John von Neumann Theory Prize, for the contributions of the research monographs "Parallel and Distributed Computation" and "Neuro-Dynamic Programming". In 2001, he was elected to the United States National Academy of Engineering for "pioneering contributions to fundamental research, practice and education of optimization/control theory, and especially its application to data communication networks."

His current work focuses on reinforcement learning, artificial intelligence, optimization, linear and nonlinear programming, data communication networks, parallel and distributed computation.

Bertsekas has held faculty positions with the Engineering-Economic Systems Dept., Stanford University (1971-1974) and the Electrical Engineering Dept. of the University of Illinois, Urbana (1974-1979). Since 1979 he has been at the Electrical Engineering and Computer Science Department of the Massachusetts Institute of Technology (M.I.T.), where he is currently McAfee Professor of Engineering. In 2019, he was also appointed Fulton Chair of Computational Decision Making at the School of  Computing, Informatics, and Decision Systems Engineering at Arizona State University, Tempe, while maintaining a research position at MIT. His research spans several fields, including optimization, control, large-scale computation, and data communication networks, and is closely tied to his teaching and book authoring activities. He has written numerous research papers, and seventeen books and research monographs, several of which are used as textbooks in MIT classes.

Bertsekas' recent books are "Introduction to Probability: 2nd Edition" (2008), "Convex Optimization Theory" (2009), "Dynamic Programming and Optimal Control," Vol. I, (2017), and Vol. II: (2012), "Abstract Dynamic Programming" (2018), "Convex Optimization Algorithms" (2015), and "Reinforcement Learning and Optimal Control" (2019), all published by Athena Scientific.

Education
  • Ph.D. System Science, Massachusetts Institute of Technology
  • M.S. Electrical Engineering, George Washington University
  • National Technical University of Athens, Greece
Spring 2019
Course NumberCourse Title
CSE 691Seminar