The interaction of light and matter is of fundamental interest to the fields of both physics and chemistry. Advances in laser technology continually push the interaction to higher energies, reaching unexplored intensities in which new science is emerging. Scott Sayres is interested in learning how quickly electrons can respond to ultrashort (femtosecond and attosecond) laser pulses. His experimental research combines three detection methods to observe how electron motion influences chemical reactions. By combining the detection of electrons, ions, and photon absorption, we gain a overall view of fundamental processes.
Pseudocarbynes: Linear Carbon Chains Stabilized by Metal Clusters, H. Kim, P. Tarakeshwar, N.M. Fujikado, K. Evraets, A.K. Jones, M. Meneghetti, P.R. Buseck, S.G. Sayres, Journal of Physical Chemistry C, 124, 35, 19355-19361 (2020).
State-resolved attosecond reversible and irreversible dynamics in strong optical fields, M. Sabbar, H. Timmers, Y.-J. Chen, A.K. Pymer, Z.-H. Loh, S. G. Sayres, S. Pabst, R. Santra, S. R. Leone, Nature Physics, 13, 472-478 (2017).
Exposing the Role of Electron Correlation in Strong-Field Double Ionization: X-ray Transient Absorption of Orbital Alignment in Xe+ and Xe2+, S. G. Sayres, E. Hosler, S. R. Leone. J. Phys. Chem. A, 118, 8614-8624 (2014).
Calculation of valence electron motion induced by sequential strong field ionization. A. N. Pfeiffer, S. G. Sayres, S. R. Leone, Mol. Phys., 111, 2283-2291 (2013).
Strong-field ionization of small niobium and tantalum clusters. D. E. Blumling*, S. G. Sayres*, M. W. Ross, A. W. Castleman Jr. Int. J. Mass. Spectrom., 333, 55-58 (2013). *These authors contributed equally to this work
Onset of Coulomb explosion in small silicon clusters exposed to strong-field laser pulses. S. G. Sayres, M. W. Ross, A. W. Castleman Jr., New Journal of Physics, 14,055014 (2012).
Oxygen-containing gas-phase diatomic trications and tetracations: ReOz+, NbOz+ and HfOz+ (z = 3, 4). V. Brites, K. Franzreb, J. N. Harvey, S. G. Sayres, M. W. Ross, D. E. Blumling, A. W. Castleman Jr., and M. Hochlaf, Phys. Chem. Chem. Phys. 13, 15233-15243 (2011).
Delocalized electronic behavior observed in transition metal oxide clusters under strong-field excitation. S. G. Sayres, M. W. Ross, A. W. Castleman, Jr. J.Chem. Phys. 135, 054312 (2011).
Influence of clustering and molecular orbital shapes on the ionization enhancement in ammonia. S. G. Sayres, M. W. Ross, A. W. Castleman Jr. Phys. Chem. Chem. Phys. 13,12231-12235 (2011). *Selected as a hot article
Strong-field ionization and dissociation studies on small early transition metal carbide Clusters via time-of-fight mass spectrometry. D. E. Blumling*, S. G. Sayres*, A. W. Castleman Jr. J. Phys. Chem. A, 115, 5038-5043 (2011). *These authors contributed equally to this work.
Strong-field ionization and dissociation of small early transition metal oxide clusters. D. E. Blumling*, S. G. Sayres*, A. W. Castleman Jr. Int. J. Mass.Spectrom. 300, 74-80 (2011). *These authors contributed equally to this work.
Ultrafast ionization and fragmentation of molecular silane. S. G. Sayres, M. W. Ross, A. W. Castleman Jr. Physical Review A, 82, 033424(2010).
Photoelectron imaging of small silicon cluster anions, Sin- (n=2-7). S. J. Peppernick, D. D. K. Gunaratne, S. G. Sayres, A. W. Castleman Jr. Journal of ChemicalPhysics, 132, 044302-044302-13 (2010).
Spring 2021 | |
---|---|
Course Number | Course Title |
CHM 341 | Elementary Physical Chemistry |
PHY 495 | Project Research |
MSE 499 | Individualized Instruction |
EEE 499 | Individualized Instruction |
CHE 599 | Thesis |
Fall 2020 | |
---|---|
Course Number | Course Title |
CHM 345 | Physical Chemistry I |
EEE 499 | Individualized Instruction |
CHE 592 | Research |
Spring 2020 | |
---|---|
Course Number | Course Title |
PHY 495 | Project Research |
MSE 499 | Individualized Instruction |
EEE 499 | Individualized Instruction |
CHE 599 | Thesis |
Fall 2019 | |
---|---|
Course Number | Course Title |
CHM 345 | Physical Chemistry I |
PHY 495 | Project Research |
EEE 499 | Individualized Instruction |
CHE 592 | Research |
CHE 595 | Continuing Registration |
Summer 2019 | |
---|---|
Course Number | Course Title |
CHE 595 | Continuing Registration |
Spring 2019 | |
---|---|
Course Number | Course Title |
CHM 494 | Special Topics |
PHY 495 | Project Research |
EEE 499 | Individualized Instruction |
CHM 546 | Molecr Spectroscopy/Group Thry |
CHE 595 | Continuing Registration |
CHE 599 | Thesis |
Fall 2018 | |
---|---|
Course Number | Course Title |
CHM 348 | Physical Chemistry Lab I |
PHY 495 | Project Research |
EEE 499 | Individualized Instruction |
CHE 592 | Research |
CHE 595 | Continuing Registration |
Summer 2018 | |
---|---|
Course Number | Course Title |
CHE 595 | Continuing Registration |
Spring 2018 | |
---|---|
Course Number | Course Title |
CHM 349 | Physical Chemistry Lab II |
PHY 495 | Project Research |
CHE 595 | Continuing Registration |
CHE 599 | Thesis |
Fall 2017 | |
---|---|
Course Number | Course Title |
CHM 348 | Physical Chemistry Lab I |
PHY 495 | Project Research |
CHE 592 | Research |
CHE 595 | Continuing Registration |
Summer 2017 | |
---|---|
Course Number | Course Title |
CHE 595 | Continuing Registration |
Spring 2017 | |
---|---|
Course Number | Course Title |
PHY 495 | Project Research |
CHM 546 | Molecr Spectroscopy/Group Thry |
CHE 599 | Thesis |
Fall 2016 | |
---|---|
Course Number | Course Title |
PHY 495 | Project Research |
EGR 499 | Individualized Instruction |
CHE 592 | Research |